CAUSAL INFERENCE FROM OBSERVATIONAL STUDY DESIGNS AND APPLICATIONS TO STUDIES OF ALCOHOL CONSUMPTION AND SEXUAL RISK

Suzi Gage
University of Liverpool

Structure of the talk

- How to get at causality in complex associations
- Methods to strengthen causal inference from observational data
- Mendelian randomization
- Negative/positive controls
- Cross contextual studies
- Sibling designs
- Natural experiments
- Discussion

Background

How we ascertain causality

- Experimental studies
- Often only proxy outcomes
- Animal studies
- Transferability
- Observational studies
- Residual confounding

Triangulation

Observational studies

Animal studies

Conventional Epidemiology

Triangulation

Cross-contextual

Longitudinal studies

Twin/family studies

Mendelian randomization

Mendelian Randomization

- Instrumental variable analysis
- Genetic variant is instrument
- Alleles inherited independently of confounding factors
- Genetic variants should not be affected by reverse causality

Mendelian Randomization

Mendelian Randomization

Mendelian Randomization

Assumptions of Mendelian Randomization

1) The genetic variant should be reliably associated with the exposure
2) The genetic variant should only be associated with the outcome through the exposure of interest
3) The genetic variant should be independent of other factors affecting the outcome (confounders)

Two-sample Mendelian randomization

GWAS: genomewide association study

Genetic variants for alcohol use

From: Commentary: Mendelian randomization-inspired causal inference in the absence of genetic data Int J Epidemiol. 2016;46(3):962-965. doi:10.1093/ije/dyw327
Int J Epidemiol | © The Author 2016; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

Genetic variants predict alcohol use

Figure 2 Association of combined $A D H 1 B$ and $A D H 1 B$ fast-allele score with average alcohol consumption levels in participants reporting drinking some alcohol and with not drinking alcohol; $n=54604$. Shows geometric means (dots) and 95\% confidence intervals of geometric means (vertical lines) of alcohol grams per week in those drinking some alcohol (A) and percentages (dots) and 95% confidence intervals of non-drinkers (B) by total number of fast-alleles.

Genetic variants predict CHD

- P value for heterogeneity obtained from test for trend using meta-regression

Fig 2 Meta-analysis pooled estimates of the association between ADH1B rs1229984 (A-allele carriers v non-carriers) and coronary heart disease overall, and stratified by alcohol intake

Mendelian randomization limitations

- Needs large sample size
- Assumption violations (hard to test)
- Needs relevant genetic variants
- Biological pleiotropy (one variant having multiple effects)
- Population stratification

Negative/positive controls

...compare analysis of interest with one where exposure (or outcome, not both!)
 changed to one with implausible (negative) or known (positive) effect, but where confounding likely to be the same

Negative/positive controls

Figure 1
Schematic representations of (a) negative control exposure and (b) negative control outcome. Confounding is the same for the exposure or outcome and its negative control. However, there is no causal association between (a) the negative control exposure and the outcome of interest or (b) the exposure of interest and the negative control outcome. The dashed line represents the negative control analysis, and the dotted-anddashed line represents the association under interrogation.

Negative controls

1) Negative control

Intrauterine tobacco exposure

Little/no intrauterine
tobacco exposure

Negative/positive control examples

- Exposures
- Comparing folate supplements during pregnancy and autism with fish oil supplements during pregnancy and autism (Suren et al, 2013)
- Folate and fish oil supplements similarly confounded
- Association between folate and autism, NOT fish oil and autism
- Suggests causality rather than confounding
- Comparing maternal smoking during pregnancy and offspring blood pressure with paternal smoking during partner pregnancy and BP (Brion et al, 2007).
- Associations similar for maternal/paternal smoking.
- Residual confounding?

Negative/positive control examples

- Outcomes
- HRT and mortality from cardiovascular disease, compared to HRT and mortality from accidents, suicide and homicide (Pettiti et al, 1986/1987)
- HRT use predicts lower cardiovascular mortality
- BUT also predicts lower mortality from other reasons with no plausible biological mechanism
- HRT use associated with lifestyle, socioeconomic, behavioural factors
- Borne out in RCT - HRT cardiovascular disease association SPURIOUS

Negative/positive control limitations

- Associations could still be confounded by other factors not shared with the negative control
- Careful selection of negative/positive control required
- Could be plausible causality with negative control (eg paternal smoking during pregnancy)
- Positive control association could be due to confounding (cannabis and education?)

Cross contextual comparison

Association more likely to be causal if it is seen across different populations with different underlying confounding

[^0]
Cross contextual comparison

Association more likely to be causal if it is seen across different populations with different underlying confounding

Cross contextual comparison

Association more likely to be causal if it is seen

 byonc/2.5/) which permits unrestriced non-comuncerial use, distribution, and reproduction in any medrum, provided the original work is properly cited.
Published by Oxford Universiey Press on bechalf of the International Epalcmiologixal Associstion. International Jeunrabas Eridentishlyy 2011;40:670-a60 und

What are the causal effects of breastfeeding on IQ, obesity and blood pressure? Evidence from comparing high-income with middle-income cohorts

Marie-Jo A Brion, ${ }^{1,2}$ Debbie A Lawlor, ${ }^{1,2}$ Alicia Matijasevich ${ }^{3}$ Bernardo Horta, ${ }^{3}$ Luciana Anselmi, ${ }^{3}$ Cora L Araújo, ${ }^{3}$ Ana Maria B Menezes, ${ }^{3}$ Cesar G Victora ${ }^{3}$ and George Davey Smith ${ }^{1,2}$
${ }^{1}$ MRC Centre for Causal Analyses in Translational Epidemiology, University of Bristol, Bristol, UK, ${ }^{2}$ School of Social and Community Medicine, University of Bristol, Bristol, UK and ${ }^{3}$ Postgraduate Programme in Epidemiology. Federal University of Pclotas. Pclotas, Brazil
*Corresponding author. MRC Centre for Causal Analyses in Translational Epidemiology. University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK. E-mail: Maric-Jo.Brion(a bristolac.uk

Table 1 Distribution of infants according to duration of any breastifeding

Breastfeeding duration (months)	Prevalence (\%)	
$0 t 0<1$	Pelotas	ALSPAC
$1 t 0<3$	25.4	36.8
$3 t 0<6$	23.6	15.6
36	35.3	13.7

For analyses, the categories of never breastfed and breastfed <1 month were merged as the prevalence of never breastfed in Pelotas was extremely low and there is substantial misclassification between these categories. $\hat{0}^{1}$

Figure 1 (a) Prevalence of breastfeeding (exclusive or non-exclusive日 at 3 months by family income group and (b) prevalence of ever breastied by family income

Breastfeeding association (per category) Effect size (95\% CI)

Cross contextual comparison

Table 4 Summary of results from the cross-cohort comparison and validation using a randomized trial

Outcome	Comparison method						Validation	
	Association with any breastfeeding (per category) ${ }^{\text {a }}$						Effeet of breastfeeding intervention	
	ALSPAC			Pelotas			Belarus	
	Strong socio-economic patterning in breastfeeding			Weak socio-economic patterning in breastfeeding			Randomized trial	
	β	95\% Cl	P	β	95\% CI	P	Difference in outcome ${ }^{\text {b }}$	95\% Cl
SBP (mmHg)	-0.35	-0.55 to -0.14	0.001	-0.03	-0.83 to 0.57	0.7	0.2	-2.9 to 3.3
DBP (mmHg)	-0.16	-0.31 to -0.01	0.04	0.05	-0.50 to 0.60	0.9	0.2	-1.8 to 2.2
BMI ($\mathrm{kg} / \mathrm{m} \mathrm{m}^{\text {O }}$)	-0.16	-0.22 10-0.09	<0.001	0.14	$-0.07100 .36$	0.2	0.1	-0.2 to 0.3
1Q	0.97	0.62 to 1.32	<0.001	1.97	0.88 to 3.05	<0.001	5.9	-1.0 to 12.8

${ }^{4}$ Nonc/<1 month; 1 to <3 months; 3 to <6 months; $\$ 6$ months; fully adjusted models.
"Intervention vs control. Results extracted from publications from the Belarus PROBIT trial. ${ }^{10,17}$
Cl , confidence interval.

Cross contextual study limitations

- Is underlying confounding definitely different?
- Similar confounders between the two will render design inappropriate
- Harmonization of exposure and outcome between contexts
- Still possibility that different confounding in each context is still influencing both results

Sibling and twin studies

- Discordant twin studies
- One has outcome of interest, other does not
- Ideally matched pairs for case-control design
- Monozygotic versus dizygotic twins
- Sibling/cousin pairs

Sibling and twin studies limitations

- Hard to find discordant twins
- Even twins have some different environmental impacts!
- Lack of generalisability - intrauterine experience
- Are identical twins treated more similarly than nonidentical twins?

Other designs: natural experiments

- Dutch Hunger Winter
- China - Great Leap Forward
- Local policy changes (eg age of compulsory education changes, alcohol policy changes)
- Limitations
- Can't predict/plan
- Can't control for other factors
- Extreme situations (famine/war) could have other impacts

Summary

- Mendelian randomization
- Unconfounded(?) genetic proxy for exposure
- Negative/positive controls
- Similar confounding between assoc. of interest and +ve/-ve control
- Cross-contextual studies
- Assess association of interest in 2 datasets where confounding differs
- Twin and family studies
- Discordant identical twins as matched cases/controls
- Natural experiments

Triangulation

Cross-contextual

Longitudinal studies

Twin/family studies

Mendelian randomization

Triangulation

Observational studies

Animal studies

Acknowledgements

Thanks to:

George Davey Smith
Marcus Munafò
Amy Taylor
Stephen Burgess

University of Bristol, UK University of Bristol, UK
University of Bristol, UK
University of Cambridge, UK

Contact: s.gage@liverpool.ac.uk; @soozaphone

Examples: Smoking related diseases

- Lung cancer
(Amos, 2010; Lips, 2010; Spitz, 2008)
- COPD/emphysema
(Kaur-Knudsen, 2011; Lambrechts, 2010; Pillai, 2009)
- Peripheral Arterial Disease
(Thorgeirsson, 2008)

Examples: Smoking and Mortality

EVER SMOKERS

NEVER SMOKERS

[^0]: Figure 2
 Schematic representations of a cross-contextual design. The exposure and outcome should be equivalent across the different contexts, but the confounding structure should not. Here, confounder A affects the
 relationship in context (a) but not in context (b). The reverse is true for confounder B.

